STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes.
نویسندگان
چکیده
Expression of SHP-1 phosphatase, a key negative regulator of cell signaling, is lost in T cell lymphomas and other malignancies due to DNA methylation of the SHP-1 promoter by a currently undefined mechanism. We demonstrate that malignant T cells express DNA methyltransferase (DNMT) 1 and that constantly activated signal transducer and activator of transcription (STAT) 3 is capable of binding in vitro to DNA oligonucleotides corresponding to four STAT3 SIE/GAS binding sites identified in the SHP-1 promoter. STAT3, DNMT1, and histone deacetylase 1 form complexes and bind to the SHP-1 promoter in vivo. Treatment with pharmacologic grade DNMT1 anti-sense oligonucleotides and STAT3 small-interfering RNA induces in the malignant T cells DNA demethylation and expression of SHP-1 gene. These data indicate that STAT3 may, in part, transform cells by inducing epigenetic silencing of SHP-1 in cooperation with DNMT1 and, apparently, histone deacetylase 1. Reversal of such gene silencing represents an attractive aim for novel anticancer therapies.
منابع مشابه
STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes.
In this study, we demonstrated that STAT3, a well-characterized transcription factor expressed in continuously activated oncogenic form in the large spectrum of cancer types, induces in malignant T lymphocytes the expression of DNMT1, the key effector of epigenetic gene silencing. STAT3 binds in vitro to 2 STAT3 SIE/GAS-binding sites identified in promoter 1 and enhancer 1 of the DNMT1 gene. ST...
متن کاملGuggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1.
Signal transducers and activator of transcription 3 (STAT3) is a transcription factor that has been associated with survival, proliferation, chemoresistance, and angiogenesis of tumor cells. Whether the apoptotic, antiproliferative, and antimetastatic effects of guggulsterone (GS), a farnesoid X receptor antagonist, are linked to its ability to suppress STAT3 activation was investigated. We fou...
متن کاملZinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP
Dnmt1 is frequently overexpressed in cancers, which contributes significantly to cancer-associated epigenetic silencing of tumor suppressor genes. However, the mechanism of Dnmt1 overexpression remains elusive. Herein, we elucidate a pathway through which nuclear receptor SHP inhibits zinc-dependent induction of Dnmt1 by antagonizing metal-responsive transcription factor-1 (MTF-1). Zinc treatme...
متن کاملLuteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1
The antitumor effect of luteolin, a plant flavonoid, in gastric cancer (GC) cells has not been fully understood. Here we show that luteolin selectively kills STAT3 overactivated GC cells that are often drug resistant. The treatment of luteolin in these GC cells significantly inhibited STAT3 phosphorylation and reduced the expression of STAT3 targeting gene Mcl-1, Survivin and Bcl-xl. Silencing ...
متن کاملTumor-Associated Macrophages Promote Epigenetic Silencing of Gelsolin through DNA Methyltransferase 1 in Gastric Cancer Cells.
Epigenetic repression of the tumor suppressor gelsolin (GSN) is frequently observed in cancers. Chronic inflammation can promote tumor progression via aberrant DNA methylation. In this study, we investigated the role of tumor-associated macrophages (TAMs) in DNA methylation of the GSN gene during gastric cancer progression. Immunofluorescence staining of 121 gastric cancer tissues showed aberra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 19 شماره
صفحات -
تاریخ انتشار 2005